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Abstract
Since deep learning was introduced into super-resolution (SR), SR has achieved remarkable
performance improvements. Since high-level features are more informative for reconstruc-
tion, most of SR methods have a lage number of parameters, which restrict their application
in resource-constrained devices. Feedback mechanism makes it possible to get informative
high-level features with few parameters, for it can feed high-level features back to refine low-
level ones, which is very suitable for lightweight networks. However,most feedback networks
work in a single feedback manner, which refined low-level features just once in each iteration
or each unit. In this paper, we propose a lightweight parallel feedback network for image
super-resolution (LPFN), which enhances the refinement ability of the feedback network. In
our method, all the feedback blocks feed back their outputs to previous layers in a parallel
feedback manner. Based on parallel feedback and residual learning, a local-mirror architec-
ture is proposed. Then, we propose a dispersion-aware attention residual block (DARB) as
the basic block in feedback block, which calculates the dispersion of pixels along channel and
spatial dimensions. We use ensemble method to reconstruct SR image. Finally, we propose a
global feedback, which feeds back the degradation results of SR to primal LR image, super-
vising the learning of LR-HR mapping function. Further experimental results demonstrate
that LPFN has an outstanding performance while taking up few computing resources.

Keywords Super-resolution · Global feedback · Residual learning · Parallel feedback ·
Lightweight
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1 Introduction

Super-resolution (SR) technology has shown broad application prospects in image restoration
and image enhancement, especially single image super-resolution (SISR), which has been
paid more and more attention in recent years. SISR aims to recover image details from the
limited information contained in low-resolution (LR) images,which is a challenging problem,
for an infinite number of high-resolution (HR) images can degrade to the same LR image.
To slove this problem, many classical SR methods were proposed [1–5, 5–12].

SRCNN [1] introduced deep learning into SR, and first applied Convolutional Neural Net-
work (CNN) architecture for image SR. Then deconvolutional layer was introduced into SR
by FSRCNN [2], which upsampled LR feature maps at the last layer, and greatly reduced the
amount of computation and space complexity. Shi et al. introduced subpixel convolutional
layer into SR in ESPCN [3], which rearranged the pixels of LR features with channel expan-
sion to generate HR features, and got rid of the redundant of deconvolution layer. LapSRN
[11] proposed charbonnier penalty function as the loss function and upsampled the LR fea-
ture maps progressively. In VDSR [4], interpolated LR images with multiple scales served
as inputs, and were added to the end layer directly to realize residual learning. Then DRCN
[5] introduced recursive architecture into SR and deepened the network, which reduced the
parameters of deep networks.

Deep networks improved SR performance significantly, for high-level features are more
informative for reconstruction. However, deep networks are difficult to train and easy to cause
the problems of gradient vanishing/exploding. Residual learning was introduced into deep-
learning-based SRmethods by VDSR [4] and worked well in ResNet [6], which can solve the
degradation problem of deep networks. Then SRResNet [7] was proposed, which contained
16 residual units. Inspired by the methods mentioned above, DRRN [8] was proposed, which
combined local residual learning, global residual learning and multi-weight recursive learn-
ing. SRDenseNet [13] sent all the feature maps to latter layers with concatenation in dense
block. EDSR [9] achieved a better performance with expanded model size by removing the
usage of Batch Nomalization (BN) in SRResNet [7], for it is not suitable for SR tasks.

Most of the SR methods worked in a feedforward manner, in which the low-level feature
maps are sent to latter layers directly or by skip connection. Feedback mechanism was
proposed earlier in the year, and was introduced into different computer vision methods [14–
17] recently. Then, feedback mechanism was introduced into SR by Hairs et al. in DBPN
[18], which calculated the errors between up- and down-sampling and fed back the errors for
self-correction. Li et al. proposed SRFBN [19], the feedback mechanism of which worked
similar to Recurrent Neural Network (RNN) with constraints. Feedback mechanism can feed
high-level features back to refine low-level ones, and further achieve powerful high-level
representations.

To achieve a good performance, most of SR methods have a large number of parame-
ters, which restrict their application in resource-constrained devices. Therefore, lightweight
networks attract academic attention for their wide application prospect. Although feedback
mechanism has been introduced into SR, which has not been widely used in lightweight
networks. Since feedback mechanism can obtain powerful high-level representations with
few parameters, which is very suitable for lightweight networks. In this paper, we propose a
lightweight parallel feedback network for image super-resolution (LPFN). The structure of
LPFN is shown in Fig. 1, which combines residual learning and feedback learning. The feed-
back learning refines low-level features by high-level ones in a synchronous parallel manner.
The residual learning sends low-level features to latter layers by skip connection for difference
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Lightweight Parallel Feedback Network…

Fig. 1 The structure of LPFN. The blue lines and orange lines are mirror images except one solid blue line
and one solid orange line. (Colour figure online)

learning. Their combination forms a local-mirror architecture. At the same time, we believe
that the features of previous iterations are too shallow toobtain valuable reconstruction results,
so we use feature ensemble method to reconstruct the final SR image. The feature ensemble
method ties the loss to all iterations, so that the hidden states carry a notion of high-level
features. The feature ensemble method is proved better than multi-reconstruction method
in experimental results. Our LPFN performs better than other state-of-the-art lightweight
networks, as shown in Fig. 2.

The contributions of LPFN are as follows:

• To refine low-level feature maps sufficiently, we propose a parallel feedback scheme. All
the outputs of feedback blocks are fed back to previous layers to refine low-level features
in a synchronous parallel manner.

• To better learn the relationship between high-level features and low-level ones, we pro-
pose a local-mirror architecture. The feedback learning refines low-level features by
high-level ones, and the residual learning sends low-level features to latter layers by skip
connection for difference learning. The combination of them helps to achieve a better
high-level representation.

• To enhance the discriminate ability of feature maps, we propose a dispersion-aware
attention residual block (DARB) as the basic block in feedback blocks. The pixels with
high dispersion must contain important information in some locations. Therefore, DARB
integrates standard deviation into channel and spatial attention modules, which learns the
dispersion of pixels along channel dimension and spatial dimensions.

• To better guide the learning of LR-HR mapping function, we propose a global feedback.
We calculate feedback-regression loss by comparing the degradation result of SR and
primal LR image, which is used to supervise the training of our network. Our global
feedback can be added to other SR methods as a module, and can be used for all scale
factors in one step, not necessarily multiple scales. Our global feedback can significantly
improve the performance of the network but introduces very few parameters.
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Fig. 2 PSNR vs. number of parameters on Set5 dataset. Orange points represent our method. (Colour figure
online)

2 Related work

2.1 Lightweight Networks

Many literatures [20, 21] have shown that deeper networks have stronger representation
power, but deep networks have a large number of parameters and are hard to train, which
have high requirements on hardware resources. Recently, lightweight networks are getting
more and more attention, for they can be applied to resource-limited devices. All lightweight
networks strive for better performance with fewer parameters and little computational com-
plexity. Dong et al. introduced deep learning into image SR in SRCNN [1]. Then they
introduced deconvolution layer to reduce calculations in FSRCNN [2]. VDSR [4] introduced
residual learning to avoid gradient explosion of deep networks. Then DRCN [5] introduced
recursive convolution into image SR, so that the networks can be deep with few parameters.
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IMDN [22] proposed information multi-distillation to achieve outstanding performance with
little computational complexity. Recently, LatticeNet [23] achieves an outstanding perfor-
mance by the combination of residual blocks. LW-AWSRN [24] has little computational
complexity but outstanding performance.

Most of lightweight methods are feedforward. Since high-level features are more informa-
tive for reconstruction, we believe that, feedback mechanism is very suitable for lightweight
networks. We propose parallel feedback mechanism to further enhance the refinement abil-
ity of the feedback network. Our LPFN achieves a better performance than the lightweight
networks mentioned above.

2.2 AttentionMechanism

Networks with attention-based model can pay more attention to important features. The
team of google mind [25] used attention mechanism in RNN for image classification tasks.
Non-Local module [26] learned the relationship between pixels within a certain distance
by capturing long-range dependencies. Squeeze-and-excitation (SE) module [27] was pro-
posed to improve the accuracy of image recognition, which learned the relationship between
channels to enhance the important features. Then, residual channel attention blocks (RCABs
[28])was proposed to improve the performance of SR,which integrated channel attention into
residual blocks. In CBAM [29], the channel attention and spatial attention are used together
to enhance the details in feature maps adaptively. Recently, the contrast-aware channel atten-
tion (CCA) was proposed in IMDN [22], which introduced standard deviation into channel
attention to improve the representation ability of attention module. CVCnet [30] proposed
cascaded spatial perception module to redistribute pixels in feature maps according to their
weights.

Inspired by the above attention models, we propose dispersion-aware attention residual
block (DARB) as the basic block in feedback blocks.We believe that if the dispersion of pixels
is high along channel or spatial dimensions, the pixels must contain important information in
some locations. Therefore, we integrates standard deviation into channel and spatial attention
modules.

2.3 FeedbackMechanism

Most SRmethods worked in a feedforwardmanner, in which the low-level features are sent to
latter layers directly or by skip connection. Feedback mechanism makes it possible that, the
previous layers can get useful information from high-level features. Feedback mechanism
was proposed earlier in the year, and has been introduced into different computer vision
methods [14–17] recently.

Feedbackmechanism can feed back high-level information to refine low-level ones, which
was introduced into SR by Hairs et al. in DBPN [18]. DBPN [18] proposed up- and down-
projection units, which realized self-correcting procedure in each unit based on feedback
mechanism. Then DSRN [31] was proposed, which used delayed feedback to exchange
recurrent signals between LR and HR states. Li et al. proposed SRFBN [19], in which
the feedback mechanism worked similar to RNN with constraints. With the help of feedback
mechanism,EMASRN+ [32] achieved an outstanding performancewith very fewparameters.

SRFBN [19] is a single feedback network worked in a serial manner, inspired by which,
we propose a parallel feedback network. In our LPFN, multiple feedback blocks work in a
synchronous parallel manner, which has a better performance than the serial single feedback
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Fig. 3 The unfolded LPFN. Since LPFN is a feedback network, which can be unfolded in time. Orange arrows
represent the parallel feedback procedure. Blue arrows represent the residual learning procedure. Then, we use
feature ensemblemethod to reconstruct SR image. The final green arrows represent global feedback procedure.
(Colour figure online)

manner used in SRFBN [19]. Furtherly, we believe the features of previous iterations are
too shallow to obtain valuable reconstruction results, so we use feature ensemble method to
reconstruct SR image, which ties the loss to all iterations. Our ensemble method has a better
performance than the multi-reconstruction method used in SRFBN [19].

3 Our Method

In this section, the network architecture of LPFN is described at first. Next, the feedback
block (FB) is described. Then the dispersion-aware attention residual block (DARB) as the
basic block of FB is described. At last, the loss function with global feedback is described.

3.1 Network Structure

Since LPFN is a parallel feedback network, which can be unfolded as Fig. 3. Orange arrows
represent the parallel feedback procedure, blue arrows represent the residual learning proce-
dure. The ensemble of upsampling results from all iterations are used to calculate the final
SR result.

LPFN contains four parts: shallow feature extraction part, parallel feedback part, recon-
struction part and the global feedback part. In the first part, the stacked convolutional layers
extract shallow features, which are passed to parallel feedback part. In the second part, the
outputs of FBs are fed back to previous layers in a synchronous parallel manner. In recon-
struction part, the outputs of FBs are concatenated and upsampled to generate HR features.
Then we use feature ensemble on the HR features of all iterations. Because of the bicubic
residual learning, the ensemble of HR features from all iterations was used to reconstuct SR
image by adding bicubic upsampling results. Finally, in global feedback part, the SR image
degrades to LR image to calculate feedback-regression loss with primal LR image.
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We define Ls is the output of shallow feature extraction part, which can be obtained by:

Ls = fc(LR), (1)

where fc consists of conv(3,128) and conv(128,32) to extract shallow LR features.
In parallel feedback part, we set the number of FB n from 1 to N, and the number of

iteration t from 1 to T. Therefore, the output of the n-th FB in the t-th iteration is defined
as Lt

n . Because of the local-mirror architecture, the input of FBs is different. In the first
iteration, the input of the first FB is only shallow features Ls , and the input of the other FBs is
shallow features Ls and all the outputs of previous FBs L1

1 . . . .L1
n−1 because of the residual

learning, which is shown in Eqn (2). In the t-th iteration, the input of the first FB is shallow
features Ls and all the feedback from last iteration Lt−1

1 . . . Lt−1
N . The input of the other FBs

is shallow features Ls , all the outputs of previous FBs from current iteration Lt
1 . . . .Lt

n−1

and the feedback of the following FBs from last iteration Lt−1
n . . . Lt−1

N , which is shown in
Eqn (3).

L1
n =

{
fFB(Ls)

fFB([Ls, L1
1 . . . .L1

n−1])
n = 1
n ≥ 2

}
, (2)

Lt
n =

{
fFB([Ls, L

t−1
1 . . . Lt−1

N ])
fFB([Ls, Lt

1 . . . .Lt
n−1, L

t−1
n . . . Lt−1

N ])
n = 1
n ≥ 2

}
, (3)

where fFB is the operations of feedback block. [] is the concatenation operation.
In reconstruction part, we concat the outputs of FBs and use deconvolutional layer to

upsample them. We define the result after deconvolutional upsampling in the t-th iteration as
follows:

Ht
rb = fup([Lt

1, L
t
2 . . . .Lt

N ]) . (4)

Then the ensemble of upsampling results from all iterations are used to reconstuct SR
image by adding bicubic upsampling result, so the SR image can be obtained by:

SR = fcm([H1
rb, H

2
rb, . . . , H

T
rb]) + fBC (LR), (5)

where fcm is the convolutional layer used to compress feature channels, and fBC is the
bicubic upsampling operation.

In global feedback part, we generate LR′ by downsampling operator fdown , which consists
of a downsampling convolutional layer and a channel-transform convolutional layer. LR′ is
compared with the primal LR to supervise the training of LPFN.

LR′ = fdown(SR), (6)

3.2 Feedback Block (FB)

We use iterative projection in our feedback block, as shown in Fig. 4. The first line is HR
feature flow, and the second line is LR feature flow. The two flows are learned iteratively
by upsampling and downsampling operations. The LR features are projected to HR features,
which are learned and projected back to LR flow to learn the relationship between LR andHR
features. The iterative up- and down-samplingmanner is helpful in improving the reconstruc-
tion performance. To further improve the performance of our FB, we use dispersion-aware
attention residual block (DARB) as each basic block, which will be covered in detail in
Sect. 3.3.
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Fig. 4 Feedback block (FB) in LPFN, which learns dispersion-aware attention residual blocks (DARB) by
iterative up-/down-projection

Since our LPFN has N FBs and can be unfolded to T iterations, the output of the n-th FB
in the t-th iteration is defined as Lt

n . Because of the feedback learning and residual learning,
the input of FBs is different, which is described in detail in sect. 3.1. In conclusion, the input
of FBs can be obtained by:

Lin =⎧⎪⎪⎨
⎪⎪⎩

Ls

fcm([Ls, L1
1 . . . .L1

n−1])
fcm([Ls, L

t−1
1 . . . Lt−1

N ])
fcm([Ls, Lt

1 . . . .Lt
n−1, L

t−1
n . . . Lt−1

N ])

n = 1, t = 1
n ≥ 2, t = 1
n = 1, t ≥ 2
n ≥ 2, t ≥ 2

⎫⎪⎪⎬
⎪⎪⎭

,
(7)

In FB, we set the number of projection groups g=4, as shown in Fig. 4. The HR features
in HR flow are defined as H1, H2, H3, H4, respectively, and the LR features in LR flow are
defined as Lin , L1, L2, L3, L4, Lout , respectively. The process of FB is as follows:

Lg =
{
fDARB(Lin)

fDARB( fdown(Hg−1))

g = 1
2 ≤ g ≤ 4

}
, (8)

Hg = fDARB( fup(Lg)) 1 ≤ g ≤ 4, (9)

Lout = fDARB( fdown(H4)), (10)

where fDARB is the operations of the basic block DARB in LR and HR feature flows. fup
and fdown are the deconvolutional upsampling operation and convolutional downsampling
operation, respectively.

3.3 Dispersion-aware Attention Residual Block (DARB)

To improve the performance of FB, we propose a dispersion-aware attention residual block
as each basic block, as shown in Fig. 5. We integrate dispersion-aware channel attention and
dispersion-aware spatial attention into residual blocks. Dispersion-aware channel attention
pays more attention to important channels, and dispersion-aware spatial attention pays more
attention to important pixels. With the help of attention modules, the detail representation
ability of feature maps are enhanced.
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Fig. 5 Dispersion-aware attention residual block (DARB),which integrates dispersion-aware channle attention
and dispersion-aware spatial attention into residual block. The dispersion-aware attention is calculated by
standard deviation, average pooling and maximum pooling

Dispersion-aware channel attention We use standard deviation, average pooling and max-
imum pooling together to generate three different descriptions of channel context. Then we
concat them to enhance the channel discriminative ability, as shown in Fig. 5. Average pool-
ing can enhance discriminative ability according to the amount of information contained in
channels. Max-pooling captures important information about features of distinctive object.
Both of them are used together in CBAM [29], but standard deviation has not been used
together with them. Standard deviation calculates the dispersion of pixels in feature maps,
which represents the information about structures, textures, and edges. Therefore, we propose
a dispersion-aware channel attention, which fuses three different descriptions of channel con-
text and can improve the discriminate ability of feature maps greatly. We define the channel
number of feature maps is c, which is from 1 to C. The information value of each channel
can be calculated by:

Vc =
√√√√ 1

HW

∑
(i, j)∈xc

(xi, jc − 1

HW

∑
(i, j)∈xc

xi, jc )2

+ 1

HW

∑
(i, j)∈xc

xi, jc + MAX
(i, j)∈xc

(xi, jc ).

(11)

Then the channel values in 1D channel attention map RC×1×1 are learned by a multilayer
perceptronwith a hidden layer, and is normalized by the sigmoid function. At last, it multiples
with the input Fin by element-wise multiplication along the spatial dimension. The output
of dispersion-aware channel attention is as follows:

Fdca = Fin ∗ σ fmlp(Vc). (12)

Dispersion-aware spatial attention We use standard deviation, average pooling and max-
imum pooling together to generate three different descriptions of pixels along spatial
dimension, as shown in Fig. 5. Average pooling and maximum pooling indicate average
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and maximum information of pixels at the same spatial location of all channels, which are
used together in CBAM [29]. We believe that if the dispersion of pixels at the same spatial
location of all channels is high, the pixels must contain important information in some chan-
nels. Therefore, pixels with high dispersion also should be paid more attention. Standard
deviation value indicates the pixel-dispersion. Therefore, we propose dispersion-aware spa-
tial attention, which fuses three different description of pixel context. The information value
of pixels at the same spatial location of all channels can be calculated by:

Vi, j =
√√√√ 1

C

C∑
c=1

(xi, jc − 1

C

C∑
c=1

xi, jc )2 + 1

C

C∑
c=1

xi, jc

+ MAX
1≤c≤C

(xi, jc ).

(13)

Then the pixel values in 2D spatial attention map R1×H×W are learned by a convolution
operation with 7x7 sized kernel, for a large receptive field helps to decide important spatial
regions. Then the output is normalized by the sigmoid function. At last, it multiples with
the input Fdca by element-wise multiplication along the channel dimension. The output of
dispersion-aware spatial attention is as follows:

Fdsa = Fdca ∗ σ( f 7×7(Vi, j )), (14)

Finally, since DARB is a residual block (see Fig. 5), Fout , as the output of DARB, can be
obtained by:

Fout = Fdsa + Fin . (15)

3.4 Loss Function with Global Feedback

We propose a global feedback in our network, which feeds back the degradation result of
SR to LR image to guide the learning of LR-HR mapping function. Therefore, the loss
of our LPFN contains two parts: the primal regression loss calculated by HR and SR, the
feedback-regression loss calculated by LR and LR′. The loss can be obtained by:

Loss = L1(SR, HR) + θL1(LR
′, LR), (16)

where θ controls the weight of feedback-regression loss. L1 represents the L1 loss function.
Our global feedback is used at the end of the network, so it can be added to other SR

methods as amodule. Since our global feedback uses convolutional downsampling to generate
LR′ in one step, it can be used for all scale factors, not necessarily multiple scales. Since our
global feedback consists only of a downsampling convolutional layer and a channel-transform
convolutional layer, which introduces very few parameters.

4 Experimental Results

4.1 Experimental Details

Datasets The DIV2k datasets are used to train our LPFN. We expand the datasets to 8000
by rotation and cropping augmentation to get HR images. Then we generate LR images by
downsampling the HR images under bicubic downsampling. At last, we perform test on five
benchmark datasets: Set5, Set14, BSD100, Urban100 and Manga109 datasets.
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Table 1 Comparisons of different weights of the feedback-regression loss on LPFN

Weight Scale Params Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

θ = 0 ×3 649k 34.53/0.9280 30.44/0.8441 29.10/0.8054 28.28/0.8558 33.68/0.9452

θ = 0.01 34.54/0.9282 30.43/0.8443 29.12/0.8060 28.37/0.8567 33.70/0.9456

θ = 0.1 34.57/0.9285 30.50/0.8453 29.15/0.8065 28.42/0.8578 33.92/0.9465

θ = 0.2 34.55/0.9284 30.47/0.8450 29.14/0.8065 28.41/0.8575 33.89/0.9463

θ = 1 34.45/0.9274 30.33/0.8419 29.10/0.8054 28.18/0.8531 33.62/0.9444

Fig. 6 LPFN-RNN. LBFN
degenerates into a feedforward
RNN network after the ablation
of feedback

Implementation details We use adam optimizer and train our network with L1 loss. We set
the initial learning rate to 0.0005, and halve it every 200 epoches for a total of 1000 epoches.
To be lightweighted, we set the number of feedback blocks N=2, and the two feedback blocks
shared the same parameters. At the same time, we set the number of iterations T=2, and the
base filter numble is set to 32. All the experiments are performed on GPU with PyTorch
framework.

4.2 Effect of Global Feedback

In this paper, we propose a global feedback to guide the learning of LR-HRmapping function.
Therefore, our loss function contains two parts, as shown in Eqn.(16), which uses θ to control
the weight of feedbak-regression loss. We change the value of θ from 0 to 1 to get the best
trade-off. When θ = 0, the results represent the ablation study of global feedback. From the
results shown in Table 1, we can find that, the performance of our method gets better with
θ increasing from 0 to 0.1, and then the performance gets worse with θ increasing from 0.1
to 1. Our network has a best performance when the weight of feedback-regression loss is set
to 0.1, which demonstrates that, the loss function can better guide the learning of LR-HR
mapping function with the help of global feedback. Therefore, we set θ = 0.1 in Eqn.(16)
to train our LPFN.

4.3 Ablation Study of Feedback

To prove the effectiveness of feedback architecture, we do ablation experiment of feedback.
The ablation study of feedback is a feedforward network similar to RNN, as shown in Fig. 6,
which is named LPFN-RNN. Since FB is applied twice in each iteration and iterations T=2,
to make a fair comparison, FB is applied 4 times as a recursive block. The comparison results
are shown in Table 2. From the comparison results, we can find that, LPFN has a better
performance than LPFN-RNN with roughly the same number of parameters. Therefore,
the introduction of feedback mechanism improves the performance of SR networks, which
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Table 2 Comparisons of our feedback and feedforward on LPFN

architecture Scale Params Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

LPFN ×3 649k 34.57/0.9285 30.50/0.8453 29.15/0.8065 28.42/0.8578 33.92/0.9465

LPFN-RNN 641k 34.52/0.9279 30.44/0.8447 29.13/0.8060 28.38/0.8570 33.79/0.9458

Fig. 7 LPFN-Serial. LBFN
degenerates into a serail feedback
network after the ablation of
parallel feedback

Table 3 Comparison of our parallel feedback and serial feedback on LPFN

feedback manners Scale Params Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

LPFN ×3 649k 34.57/0.9285 30.50/0.8453 29.15/0.8065 28.42/0.8578 33.92/0.9465

LPFN-Serial 640k 34.54/0.9281 30.45/0.8445 29.13/0.8062 28.34/0.8565 33.77/0.9457

demonstrates that feedback mechanism can generate powerful high-level representations
without adding new parameters.

4.4 Ablation Study of Parallel Feedback

To prove the effectiveness of the parallel feedback we designed, we compare it with the
serial feedback architecture proposed in SRFBN [19]. In our LPFN, we set T=2, and two
parallel feedback blocks. To make a fair comparison, we set T=4 in the serial feedback
architecture with one feedback block, as shown in Fig. 7, which is named LPFN-Serial.
From the comparison results shown in Table 3, we can find that, the parallel feedback we
designed has a better performance than the serial feedback architecture proposed in SRFBN
[19]. Feedback architecture improved the performance of feedforward architecture (proved
in Sect. 4.3), and our parallel feedback furtherly improved the performance of existing serial
feedback architecture by refining low-level feature maps more sufficiently.

4.5 Improvement of DARB

In FB, we propose a dispersion-aware attention residual block (DARB) as the basic block,
which integrates dispersion-aware channel attention and dispersion-aware spatial attention
into residual blocks. To prove the effectiveness ofDARB,we compare ourDARBwithCBAM
[29] and IMDN [22]. We use the attention model CBAM [29] on our method, named LPFN-
CBAM,which consisted of channel attetnion and spatial attention calculated by both average-
pooling andmax-pooling.We use contrast-aware channel attention (CCA) proposed in IMDN
[22] on our method, named LPFN-IMDN, which is a channel attention model calculated by
average-pool and standard deviation. The structure of attention modules mentioned above
are shown in Fig. 8, and the comparison results are shown in Table 4. IMDN [22] only has
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Fig. 8 Attention modules. LPFN
is along channel and spatial
dimensions using average
pooling, max-pooling and
standard deviation operations.
CBAM [29] is along channel and
spatial dimensions using both
average pooling and max-pooling
operations. IMDN [22] is along
channel dimension using both
average pooling and standard
deviation operations

Table 4 Comparison of our DARB and existing attention models on LPFN

Attention module Scale Params Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

LPFN ×3 649k 34.57/0.9285 30.50/0.8453 29.15/0.8065 28.42/0.8578 33.92/0.9465

LPFN-CBAM 648k 34.47/0.9279 30.46/0.8446 29.14/0.8066 28.37/0.8572 33.79/0.9459

LPFN-IMDN 647k 34.54/0.9281 30.45/0.8438 29.15/0.8063 28.43/0.8576 33.88/0.9462

channel attention, but has a better performance than CBAM [29] because of the standard
deviation included in its CCA block. Our DARB has a better performance than CBAM [29]
for we included standard deviation in DARB. Our DARB also has a better performance than
IMDN [22], for we included channel attention and spatial attention in DARB. Therefore,
standard deviation should be calculated in attention module, which indicates the dispersion
of pixels along channel or spatial dimensions. The results demonstrate that our DARB is
efficient to improve the performance of the network.

4.6 Ablation Study of Ensemble Method to Reconstruct SR Image

Most of the multi-branch networks reconstruct SR image by multi-reconstruction, such as
MemNet [10], DRCN [5], LapSRN [11] and SRFBN [19]. SRFBN [19] was themost relevant
method to our LPFN, which reconstructed SR image in each iteration to train the network
and use the last SR image as the final SR result. textcolorredWe think the features of previous
iterations are too shallow to obtain valuable reconstruction results, so we use ensemble
method to reconstruct SR image. To prove the improvement of our ensemble method, we use
multi-reconstruction method on our LPFN, which is shown in Fig. 9. From the comparison
results shown in Table 5, we can find that, PSNR value of LBFN is 0.15 higher than LBFN
withmulti-reconstruction. The results demonstrate that, the features of previous iterations are
too shallow to obtain valuable reconstruction results and ensemble method is more suitable
for feedback networks than multi-reconstruction method.
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Fig. 9 Multi-reconstruction method used on our LPFN. To verify the improvement of our ensemble method,
we use multi-reconstruction method on our LPFN to make a comparison

Table 5 Comparison of our ensemble method and multi-reconstruction method to reconstruct SR image on
LPFN

Reconstruction
methods

Scale Params Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Ensemble method ×3 649k 34.57/0.9285 30.50/0.8453 29.15/0.8065 28.42/0.8578 33.92/0.9465

Multi-reconstruction 649k 34.43/0.9274 30.40/0.8431 29.10/0.8052 28.30/0.8556 33.54/0.9436

4.7 Comparison with the State-of-the-art Methods

As a lightweight network, we compare our LPFN with other lightweight state-of-the-art
methods, such as SRCNN [1], FSRCNN [2], VDSR [4], DRCN [5], LapSRN [11], DRRN
[8],MemNet [10], SRFBN-S [19], LW-AWSRN[24], CARN[33], IMDN[22] andLatticeNet
[23]. The PSNR and SSIM values of them are compared, as shown in Table 6. We can find
that, our LPFN has less parameters, but better performance than other lightweight state-of-
the-art methods. At the same time, we compare the multi-adds value with other methods by
assuming the output image size to be 1280 × 720. Our network uses a lot of concatenation
operations for our parral feedback architecture, which increases our multi-adds value. On the
whole, however, our performance remains outstanding.

At last, we provide visual comparisons of the SR images on ×4 with other lightweight
state-of-the-art methods, such as DRCN [5], DRRN [8], SRFBN-S [19], IDN [34], IMDN
[22], as shown in Fig. 10. From the comparison results, we can find that, our method recovers
textures and detials better than the others, which demonstrates the improvements of our
LPFN.

5 Conclusion

In this paper, we proposed a lightweight parallel feedback network for image super-resolution
(LPFN). All the feedback blocks in LPFN fed back their high-level features to refine low-level
ones in a synchronous parallel manner. The parallel feedback and residual learning formed a
local-mirror architecture,which learnsmore about the relationship between low-level features
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Fig. 10 Visual comparisons of our LPFN with other SR methods on Set14, BSD100 and Urban100 datasets
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and high-level ones. Then, we proposed a dispersion-aware attention residual block as the
basic blocks in feedback blocks, which improved the discriminate ability of feature maps
and enhanced image details. We used ensemble method to reconstruct SR image, which has a
better performance thanmulti-reconstructionmethod.At last, we proposed a global feedback,
which fed back the degradation results of SR to LR, and calculated the feedback-regression
loss with primal LR. Feedback-regression loss helps to better learn the mapping function
from LR to HR. Further experiments based on benchmark datasets show that, the LPFN we
proposed has an outstanding performance as a lightweight SR network.
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